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Assume the entries of Y = Yn×n are i.i.d. CN(0, 1). Two ways to
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2. Background for Circular β-Ensembles

I Probability density function
eiθ1 , � � � , eiθn : eigenvalues of Haar-invariant unitary matrix.

pdf: f (θ1, � � � , θnjβ = 2), where

f (θ1, � � � , θnjβ) = Const �
∏

1≤j<k≤n

jeiθj � eiθk jβ

β > 0, θi 2 [0, 2π)

This model: circular β-ensemble (β = 1, 2, 4) by physicist
Dyson for study of nuclear scattering data
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I Three Important Circular Ensembles

COE (β = 1), CUE (β = 2), CSE (β = 4)

Construction of COE and CUE
U = Un×n : Haar unitary

U follows CUE

UTU follows COE

CSE is similar but a bit involved (see Mehta)

Entries of CUE : roughly independent CN(0, 1) (Jiang, AP06)
Entries of COE : roughly CN(0, 1) (but dependent) (Jiang, JMP09)
Killip & Nenciu: Matrix models for circular ensembles
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Moments for Circular β-Ensembles

I Bad news from COE: Let Mn be COE. By elementary check

E
[
jTr(Mn)j2

]
=

2n
n + 1

Moments depend on n

Later results: E
[
jTr(Mn)j2

]
not depend on n only at β = 2

This suggest: moments for general β-ensemble depend on n
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I Notation

λ = (λ1, λ2, � � � ) : partition

jλj = λ1 + λ2 + � � � : weight

mi(λ) : multi of i in (λ1, λ2, � � � )
l(λ)= # of positive λi in λ : length

zλ =
∏
i≥1

imi(λ)mi(λ)!

pλ =
∏l(λ)

i=1 pλi , where pk(x1, x2, � � � ) = xk
1 + xk
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λ = (3, 2, 2) : jλj = 7, m2(λ) = 2, m3(λ) = 1, l(λ) = 3,

pλ = (
∑

i λ
3
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∑
i λ

2
i )2
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Take β = 2, then A = B = 1. We recover

I Theroem (Diaconis and Evans: 2001)
a = (a1, � � � , ak), b = (b1, � � � , bk) with aj, bj 2 f0, 1, 2, � � � g.
For n �

∑k
j=1 jaj _

∑k
j=1 jbj,

E

 k∏
j=1

(Tr(Uj
n))aj(Tr(Uj

n))bj

 = δab
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I Exact formula
The exact formula gives

E[jp1(Zn)j2] =
2
β

n
n� 1 + 2β−1

=


2n

n+1 , if β = 1
1, if β = 2

n
2n−1 , if β = 4

Exact formula is given next
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Proofs by Jack Polynomial

I Jack Polynomial
Jack polynomial J(α)

λ = J(α)
λ (x1, � � � , xn) is symmetric in x1, � � � , xn

α = 1, it is Schur polynomial

α = 2, it is Zonal polynomial

α = 1/2, it is Zonal spherical function

Orthogonal property: Zn = (eiθ1 , . . . , eiθn)

∫
[0,2π)n

J(α)
λ (Zn)J(α)

µ (Z̄n)
∏

1≤p<q≤n

jeiθp � eiθq j2/α dθ1 � � � dθn

= δλµ � δ(l(λ) � n) � explicit const
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Write

J(α)
λ =

∑
ρ:|ρ|=|λ|

θλρ (α)pρ

pρ =
∑

λ:|λ|=|ρ|

Θλ
ρ(α)J(α)

λ

For jµj = jνj = K,

E
[
pµ(Zn)pν(Zn)

]
=

∑
λ`K: l(λ)≤n

Θλ
µ(α)Θλ

ν (α)E(J(α)
λ J(α)

λ )
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Use

explicit form of E(J(α)
λ J(α)

λ )
relationship between θλρ (α) and Θλ

ρ(α)

we have

E
[
pµ(Zn)pν(Zn)
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= αl(µ)+l(ν)zµzν

∑
λ`K: l(λ)≤n

θλµ(α)θλν (α)
Cλ(α)

Nα
λ (n)

Cλ(α) =
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(i,j)∈λ

{
(α(λi � j) + λ′j � i + 1)(α(λi � j) + λ′j � i + α)

}
Nα
λ (n) =

∏
(i,j)∈λ

n + (j� 1)α� (i� 1)
n + jα� i

Young diagram
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Main proof:

play Cλ(α)
play Nα

λ (n)
use orthogonal relations of θλµ(α)



I Examples

E[jp1(Zn)j4] =
2nα2(n2 + 2(α� 1)n� α)

(n + α� 1)(n + α� 2)(n + 2α� 1)

=


8(n2+2n−2)
(n+1)(n+3) , if β = 1

2, if β = 2
2n2−2n−1

(2n−1)(2n−3) , if β = 4
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The End!



Thanks for your patience!


